ficket Number:

Code No. : 31305 S

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (E.C.E.) III Year I-Semester Supplementary Examinations, May/June-2017

Automatic Control Systems


Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

1. Determine transfer function $\frac{C(s)}{R(s)}$ for a given block diagram.

- Distinguish between AC and DC servomotors. 2.
- The loop transfer function of a system is given by $G(s)H(s) = \frac{\kappa}{S(s+1)(s+2)}$. Identify the 3. type, order of the system and also find steady state error for unit step input.
- The open loop transfer function of a unity feedback system is given by $G(s) = \frac{K}{S(s+4)}$ 4. Determine the value of 'K' such that damping ratio is 0.5.
- Define Gain margin and Phase margin with formulas. 5.
- 6. Draw the polar plot for phase lag compensator.
- 7. The characteristic equation of discrete data system is given by $F(z) = Z^2 - Z + 1$. Check the stability of the system.
- Prove that for a sample data system $G_1G_2(z) \neq G_1(z)G_2(z)$ where G_1 and G_2 are gains of 8. individual blocks of a system.
- Determine the characteristic equation if system matrix is given by $A = \begin{bmatrix} -5 & 1 & 0 \\ 0 & -5 & 1 \\ 0 & 0 & -5 \end{bmatrix}$ and also comment on stability. 9.
- 10. Determine state transition matrix if the system matrix is given by $A = \begin{pmatrix} -4 & 0 \\ 1 & -1 \end{pmatrix}$.

Part-B $(5 \times 10 = 50 \text{ Marks})$

11. a) For the given mechanical system write system equations. 1111111111111111

k, 1-1 3, Μ, Lx, K. F(+) H. ل 3 K_s Ix, Ns

b) Draw the electrical equivalent circuit using Force-Voltage and Force-Current analogy [7] for the system shown above.

[3]

12.	a) The open loop transfer function of a unity feedback meters in it. 1. 2(2) 16	
	. a) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{16}{S(S+4)}$. Determine time domain specifications for a unit step input.	[5]
. 1	b) Determine the number of right half plane poles in the closed loop system whose transfer function is given by $T(s) = \frac{10}{S^5 + 7S^4 + 6S^3 + 42S^2 + 8S + 56}$.	[5]
13.	a) Sketch the bode plot of a system with transfer function $\frac{512(S+3)}{S(S^2+16S+256)}$ and comment on system stability.	[7+3]
Ĩ	on system stability.	
14.	a) What are the advantages and disadvantages of digital control system.	[6]
	b) Derive transfer function of Zero order hold circuit.	[4]
15.	a) Obtain a state model for a system with transfer function $\frac{C(s)}{R(s)} = \frac{2S^2 + 6S + 5}{(S+1)^2(S+2)}.$	[5]
	b) Obtain a state model for a system with transfer function $\frac{C(s)}{R(s)} = \frac{2S^3 + 7S^2 + 12S + 8}{(S^3 + 6S^2 + 11S + 9)}$ using signal flow graph method.	[5]
10	Presenting the webbe to 100 media that the regist of their lighter.	
16.	a) Derive the transfer function for field controlled D.C servomotor.	[5]
	b) Sketch the root locus for a given loop transfer function $G(s)H(s) = \frac{k(s+2)}{s^2}$. Determine the range of 'k' for the system to be stable.	[5]
17.	Write short notes on any two of the following:	
	a) Nyquist stability criteria	[5]
	b) Controllability and Observability	[5]
1	c) Pulse transfer function.	[5]
-		[5]

ଔଔଷ୍ଟରାରେ

(b) Prove the absenced sequivalent corealities (1) on a Notage and Trans-Cherrot, and an approximation proves above

:: 2 ::